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THE GENERAL CASE OF LIAPUNOV'S PERIODIC MOTIONS OF A HEAVY SOLID BODY 

WITH A SINGLE FIXED 

M.A. MARINBAKH 

POINT* 

Geometric interpretation is given for a class of periodic motions of a dynamically 
unsymmetric heavy solid body, which exist according to Liapunov's theorem on the 
holomorphic integral close to permanent rotations. Orientation and the ratio of 
semiaxes of ellipses of small oscillations (first approximation trajectories) with 
respect to the Staude curve of permanent rotations are investigated. 

The case when the center of mass of a solid body lies on the principal axis of its ellip- 
soid of inertia is analytically considered besides a number of singularities of the general 
case. Investigation of the latter is supplemented by results obtained on a computer for the 
characteristic example which is of considerable interest because of the complexity construct- 
ing the Staude curve. The analysis enabled us to elucidate the properties of Liapunov's per- 
iodic motions and their first approximation which differ from the previously obtained /1,2/. 

1. The motion of a solid body with a fixed point (suspended solid particle) under the 
action of gravity is defined by the Euler-Poisson equations which, after linearization near 
permanent rotation (relative to the equilibrium position), are of the form 

I,&' = (I? - 13) (& + o&2) f vzg, -v&Y, 
V ; = OaV2 - QV3 + E3Y2 - E,Y, 

where g, are coordinates of the body center of mass multiplied by 
of inertia, mi, yi are components of vectors of angular velocity 
(which defines permanent rotation), respectively in the system of 

(1.1.) 

(123) 

its weight, Ii are moments 
wand of the vertical y 
coordinates attached to the 

principal axes of the ellipsoid of inertia with &, vi their respective variations, i = 1,2,3, 
and the symbol (123) indicating omitted equations (or terms of a sum) that are obtained by 
cyclic permutation of indices. 

Complete equations of motion imply that Wi and yi are connected by the relations 

yi = o,io, (12 - 1,) O%Y, = "t%z - yeg, (1 2 3) (1.2) 

so that the permanent rotations fillthe Staude curve (K), i.e. that part of the intersection 
of cone 

x (12 - Is) glYzY3 = 0 (1.3) 
(123) 

with the unit sphere 

(1.4) 

where 02 > 0. 
In the permanent rotation neighborhood the small oscillation trajectories 

v = c (U c0sQt + v sin Qt) (1.5) 

are ellipses with principal directions 

u = u'cos 'p -+ v'sin cp, v = - u'sin 'p + v' cos 'p 

provided that angle 'p has been chosen so that the scalar product (u, V)= 0. Here u' + iv' is 

the coordinate component of the eigenvector of system (1.1) with pure imaginary eigenvalue 

h= --iQ. 
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When point (1.2) moves on K, two quantities that completely define the shape and orient- 
ation of ellipses lying in the plane tangent to sphere (1.4) change at point (1.2). These 

quantities are the ratio of semiaxes f =u/u and the angle tl= arccos[(u,z)/(uz)] between vector 
u and the normal z to cone (1.3) with components 

21 = (I, - I,) g3yz -I- (1, - 11) gz-?, (1 2 3) 

For the determination of 6 and f (as functions of a point on K) it is, thus, necessary 
and sufficient to know at every point the pair u,v. 

Statement 1. Vectors u and v are of the form 

u = [R coscp + S sin cp, yl, v = [-R sin cp + S cos cp, ~1 

tg2,+,=2 ,(S.S)-(R.y)(S,?) 
RL--S"- (R, y)a+(S,~)a 

R = (4, Rz, R,), S = (S,, S,, S,) 

(1.6) 

al=- 

Proaf . Expressing %i in terms of vi in the first three equations of system (1.11, for 
the determination of eigenvectors we have 

(1 2 3) 
(1 2 3) 

From the fourth equation of the system we obtain (u' + iv’, R + is) = 0, where R and S are 
defined by formulas (1.61, and from the last three equations we have (II'+ ivl, y)= 0. It is 
consequently possible to assume u'+ iv'= [R + iS,vl. Finally, angle cp in formula (1.6) is 
determined by formula 

tg 2m = 2 (u', v') (U'S - u'Z)-1 (1.7) 

which ensures the fulfillment of condition (u, v) = 0. 

Remark. Since angle piis determined with an accuracy to n/2, the directions of u, v 
are accurate within the substitution (Xl=) v, (=F) u. 

2. If the parameters of the body are free of constraints, the dependence of functions 
6 and f onthepoint position of curve Kis complex (see Sects.3 and 4 below). However the 
picture is sometimes simplified. 

Statement 2. If the body center of mass is on the principal axis, vectors u and v are 
directed along the normal and the tangent to the Staude curve, respectively, i.e. e = 0. 

In fact, curve Kdecomposes into two coordinate semicircles. The motion trajectories 
prove to be symmetric relative to the planes of these semicircles ~112, viz, hence 8 =o, 
which is also implied by the general formulas (1.6). Statement 2 also holds when the body 
center of mass is in the equatorial plane (for admissible points on the coordinate semicircle), 
as well as in the case of dynamic symmetry investigated in /4/. 
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Thus, when the body center of mass lies on the principal axis, it is necessary to analyze 
the behavior of function f. Let for definiteness g, = g, = O<g,, I,= mI,,I, = nZs. Permanent 
rotations fill semicircles vz = 0, yI > 0 when m > 1 (yz = 0, y1 < 0 , when m < I), ys = 0, y1 > 0 
when m> n(y3 = 0, y1 < 0, when m< n), and the isolated points y1 = &I. Let us restrict the 
investigation to the case of yz = 0, assuming that no constraints are imposed on mand n ex- 
cept the triangle inequality 

m+n>l, n-l<m,<n+l (2.1) 

From formulas for u and v follow two equivalent expressions for f 

Zmn + (n - 1) y.2 + m (m - 7z - 1) yla 

zfm + (n - 1) y$- m (n - 1)yp I 
= m=q; 

1 = hzy,z,g,-’ = (-P + V-P” - 44)/Z 

P = I2mn - m - n + 1 + VI2 (m - 1) (m2 - 2mn - m - n + 1)] [(m - 1) mn]-l 

Q = (n - 1) ys2 [l-3y,2 (m - I)1 [(m - 1) mn]-1 

The discriminant Pa- 4Q is a total square in ya2 onlywhen m=2 and m+n=l. When 
m=Z,l,<n<3 

1, = -_yzr I, = (n - 1) (Z-3ysa)/2n 

f, = 1 y3 I, fz = in (3y$ - 2)/Z (n - l)l’fx 

When m f n = 1 (i.e. in the case of a flate plate) 

1, = ys2/n, 1, = (1 + 3ny,B)/n 

fl = 2n I ys I im, f2 = ‘I2 (1 + 3rq8)“* 

When m+n#l, then in conformity with (2.2), as yl-+O 

f, = 1 + ‘lz (m - 1) bn (n - m) - 3 (n - I)] (m + n -1)-l Y: f 0 (rt) 

ft = [ z$311’* + [ m @-;yy 2) _ 

m2--m+1 
+ 2 I I9 + O(Y1') 

and when ya -PO and n # (m - 1)V (2m - 3) 

11= It (2m -3)-(m - I)9 
(m-l)n + O(YS2) 

l*= 
(n - 1)(3m - 4)y,Z 

[(m-l)"- n (am-3)]m + O(Q) 

fl = I(m - I)% - (2m - 3)]‘f* / (n - m + 1) + 0 (y33) (2.3) 

fa = (n - m + 1) [(3m - 4) (1 - m)]‘f: {m (n - 1) [(m - l)a -n (2m - 3)1)-‘/z 1 yS ( + 0 (yas) 

Functions f,,r (v3) are of a form similar to that in /4/, and are in the main determined by 
the values 

f 1,x> ah,3 

74g 
when YI=O and 

f 
ah afa 

1,*> ayaa’ ays 
when y3=0 

The signs plus and minus in Fig.1 indicate subregions of region (2.1) insidewhich -$ y,=. 
retains positive and negative values, respectively. The curve in Fig-l, where this 
expression is zero, is defined by the equation n = (ma -3)/( m -3),with the expansion of fl - 1 
close to y1 = 0 beginning with terms of order Y14. The similar curve for fz is defined by 
the equation 

n = (m - 1) (ma - 3m - 1) I (ma - m + 1) 

Close to A = 0 the expansions of fl,a are defined by formulas (2.3). However on curve 
n = (m -1)‘/(2m - 3) the proportionality coefficient in the relation fl- I y3 I becomes infinite, 
and we then have 

1 = const. I y3 1 + 0 (r3) and fa = const. I y3 I”* + 0 ( I ys I”*). 



Liapunov's periodic motions of a heavy solid body 601 

3. Let us consider the general case in which the Staude curve K consists of four con- 
nected components adjoining the sphere poles where yI = & 1 and when it is possibletoassume 
without loss of generality gl> 0 (123), I,#12 (123) . These components are shown in Fig.2 by 
heavy lines on the unit sphere of directional cosines (the remaining notation is explained 
below). 

At bifurcation points these components separate into sections with changed degree of in- 
stability /5/ of permanent rotations and those with unchanged number of sets of ellipses.Note 
also that on sections of curves adjacent to the poles correspondingtothe semimean axisofthe 
body ellipsoid of inertia, there exists one set, while on the semiminor and semimajor axes 
there are two. 

Statement 3. As point (1.2) approaches along Kthe pole 0 +O (or &n), one set of 
ellipses is transformed into a circle, and for the second, if it exists, 

fa *Ili+lJi+2 (Ii - ri+J-l (Ii - Ii+2)-1j’/f 

Indeed, let us assume for definiteness i==i,i.e. yl+l, then retaining terms of the 
highest order in expressions for coefficients of the characteristic equation AZ@'+ pi2 + Q)= 

0, we obtain 

P = ma [l + (I, - IJ(II - Is)1,-'13-11, Q = o4 (I, - IO) x (I, - I&I,-11,-l 

from which 

If the first axis corresponds to the semimajor or semiminor axis of the ellipsoid of in- 
ertia, then aza < 0. From (1.6) we have 

R = (--hod, 0, 0), iS = (0, g,d (I, - II)-‘, g, d (I, - Z&l) 

d = a,* (a2*a2* - l), al* = limy,,a, < 00 (1 2 3) 
e = (0, gs (18 - I,), g1 (11 - I,)) 

hence 
us = U = (0, hoy,d,- ho@) II z, v = v' = (0, -c&d, - @‘Y,d) J_ 2 

f =+=*, fl'h fB = [r,l,(I~- ZJl(Ip- I,)-']% 

Q.E.D. 

Statement 4. As the point of the degree of instability change with zero characteristic 
rootisapproached,the ellipses Contract to a segment directed along the tangent to K (i.e. 

8 -4, n/2, f -+O). 

Indeed, when h.=O al=0 (/23), S= 0, in conformity witi (1.6) 

+ R = (g,w,* (II -121-l + &Y2% (18 -11)-l - gzyly*‘(II - 12)-l, - WlY22 (12 - 11)-l) 

Then Rllz,u= [R,yl~z,V=O, and, con- 

sequently, 9 =(_t,d2) f = 0. Another type of 

change of the degree of instability, when the 
discriminant P2- 4Q changes its sign and 
P<O , is also possible.Twcsetsofellipses 
with common initial values of 8 and f then ap- 
pear, as of instance in the case of 1, = I,, 
gJgs(( 1 /4/. 

Statement 5. Functions 9 and f become 
discontinuous at points where u'¶ -~'~vanishes. 
The increment of 0 is then equal n/2 or 3d2, 
and f changes to i/f. 

Fig.1 Fig,2 
PrOOf. Let at the limit U’2 - y’2 = 0. 

Formula (1.7) implies that when (u',v')#O, 
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the limit values ahead and behind the discontinuity point are 

u_ = (u' - v')/fl v_ = (u' + v')/v 2, u, = v_, v, = -u_ and 
Cp- = -m/4, 'p+ = nib, hence 

ment of angle Cl is consequently hEI = n/2 or 
(u_, u+) = (u'" - v")/2 = 0. Tjl":;cr'; 

3n/2 (z changes continuously), and u 
v'I/\u'-v'\=lif+. When (u', v')=O then u = u', v = v', u = v = 1, f = 1. At the passage of f 
through the value f = 1 cp changes to 'p z!z nf2 which leads to the change of u, v to +v, iu 

and to another jump of tl. 

4. A complete analytical investigation of the behavior of functions 0 and f on K pres- 

ents considerable difficulties. These functions were investigated numerically for I, = 6, 
I, = 4, I3 = 3, g, = 1, g, = 0.01, g, = 0.02 . For a similar set of parameters the Staude curve has 

the largest sequence of sections with unchanged degree of instability. 

Results of this investigation are shown in Figs.2 and 3. In Fig.2 the dash-dot line re- 
presents arcs of curve K, each of which constains one set of ellipses (andLiapunovperiodic 

motions). Points on these arcs are of the saddle type for the reduced potential V, and un- 
stable in the first approximation. Shading /in Fig.2/ denotes arcs with two sets of ellipses 
(and Liapunov periodic motion , when the nonresonance conditions kl#sh,, where s is an integer, 
are satisfied). These are points of minimum or maximum of v. In case of minimum of JJ 

(shading lines directed downward) the last condition may be disregarded accordinqtothetheorem 

in /6/. Properties of critical points V on K are obtained in accordance with /3,7/. 

The dependence of f and 0 on p which parametrizes curve K/0/ 

is shown in Fiq.3,a and b. 

The solid and dash curves correspond to two different values of h, and h,. The sign of 
0 is chosen so that e> 0 when the three vectors u,z, y are right-handed. The symbols 

I,+,I, , etc. in Fig.2 denote limit values of u that correspond to the ends of admissible 

arcs and, also, to the points of change of the 

degree of instability pl,..., ps, which are 
stationary for the integral of moment /5/ 

Fig.3 

The dependence of J and h,ih, on p are 
shown in Fiq.3,c by the continuous and dash 

lines, respectively. 

The analysis of data shown in Fig.3 enabl- 

es us to reach the following conclusions. 

Functions B and f are different for dif- 

ferent frequencies at one and the same point. 

Functions 8 and f do not always vary mono- 

tonically and continuously. Their behaviorcon- 

forms to Statements 3-5 and the remark. Hence, 

for instance f +a3 as p -fcL~ WY ~LS I or vs. 
The increment of 0 on each arc is bounded 

by the quantity 3n and, briefly by n/2 on all 

arcs, except arc (I,,+m). 

Functions f and h,/hs are continuous when p = Ii. 

Resonance points converge at points pLa and 

p9 (see Fiq.3,c). 
The degree of instability varies along K 

in dependence of the properties of V, and is 

denoted in Fiq.3,c by the numerals CO), Cl), 

and (2). 

The author thanks V.V. Rumiantsev. V.G. 

Demin, and Ia.V., Tatarinov for useful remarks. 
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